INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4938B Dual precision monostable multivibrator

Preliminary specification File under Integrated Circuits, IC04 January 1995

HEF4938B

FEATURES

- · Separate reset inputs
- · Triggering from leading or trailing edge
- I_{CC} category: MSI

DESCRIPTION

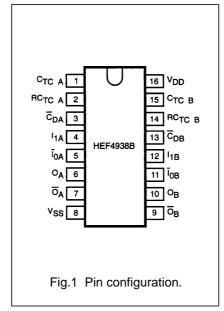
The HEF4938B is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has an active LOW trigger/retrigger input (Ī₀), an active HIGH trigger/retrigger input (I₁), an overriding active LOW direct reset input (\overline{C}_D) , an output (O)and its complement (O), and two pins (C_{TC} and RC_{TC}) for connecting the external timing components Ct and R_t. Typical pulse width variation over temperature range is ±0.2%.

The HEF4938B may be triggered by either the positive or the negative edges of the input pulse and will produce an accurate output pulse with a pulse width range of 10 µs to infinity. The duration and accuracy of the output pulse are determined by the external timing components Ct and Rt. The output pulse width (T) is equal to $R_t \times C_t$. The linear design techniques in LOCMOS guarantee precise control of the output pulse width. A LOW level at \overline{C}_D terminates the output pulse immediately. Schmitt-trigger action in the inputs makes the circuit highly tolerant for slower rise and fall times.

FUNCTION TABLE

I	NPUT	OUTPUTS			
Ī ₀	I ₁		0	ō	
1	L	Н	7	7	
Н	1	Н	7	7	
X	Х	L	L	Н	

Notes


- 1. H = HIGH voltage level
- 2. L = LOW voltage level

ORDERING AND PACKAGE INFORMATION

TYPE NUMBER	PACKAGES							
TIPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE				
HEF4938B	16	DIL	plastic	SOT38Z				

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	C _{TC A} , C _{TC B}	external capacitor connections
2, 14	RC _{TC A} , RC _{TC B}	external capacitor/resistor connections
3, 13	$\overline{C}_{DA}, \overline{C}_{DB}$	direct reset input (active LOW)
4, 12	I _{1A} , I _{1B}	input (LOW-to-HIGH triggered)
5, 11	$\bar{I}_{0A}, \bar{I}_{0B}$	input (HIGH-to-LOW triggered)
6, 10	O _A , O _B	output
7, 9	$\overline{O}_A, \overline{O}_B$	complementary output (active LOW)
8	V _{SS}	ground (0 V)
16	V _{DD}	positive supply voltage

- 3. X = state is immaterial 4. \uparrow = positive-going transition
- 5. \downarrow = negative-going transition → = positive output pulse
- 7.

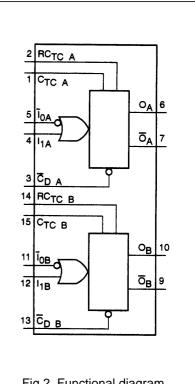
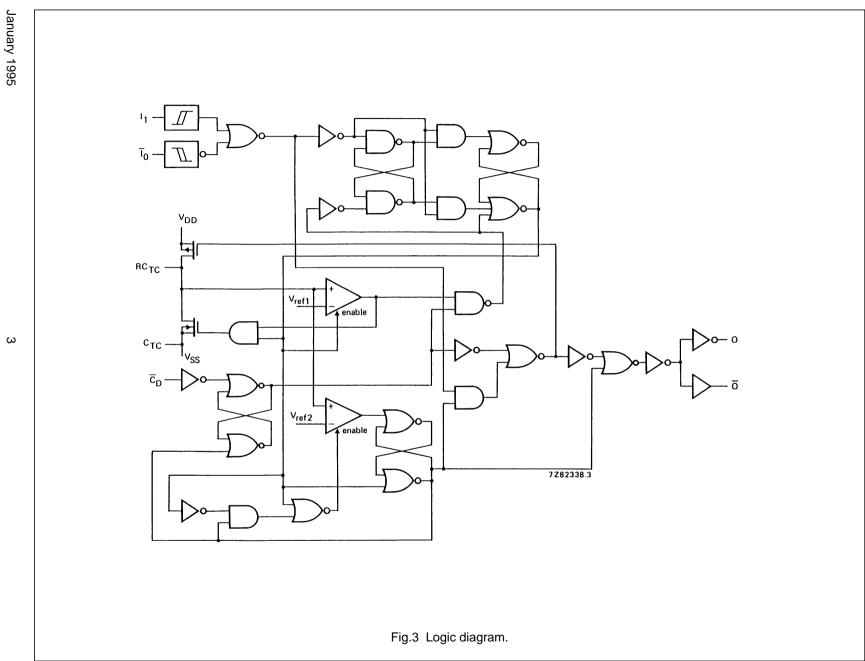
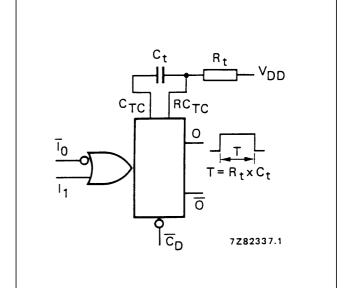



Fig.2 Functional diagram.

HEF4938B


FUNCTION TABLE

	INPUTS	OUTPUTS			
Ī ₀	I ₁	\overline{C}_D	0	ō	
\	L	Н	Л	И	
Н		Н	л	и	
X	X	L	L	Н	

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

- 6. \prod = positive output pulse

Connection of the external timing

components R_t and C_t.

DC CHARACTERISTICS

 $V_{SS} = 0 V$

		SYMBOL	T _{amb} (°C)						
	V _{DD}		-40		+ 25		+ 85		
			TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	
Supply current	5				55				μΑ
active state	10	I _D			150				μΑ
(see note)	15				220				μΑ
Input leakage									
current	15	±I _{IN}				300		1000	nA
(pins 2 and 14)									

Note

1. Only one monostable is switching: current present during output pulse (output O is HIGH).

HEF4938B

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns.

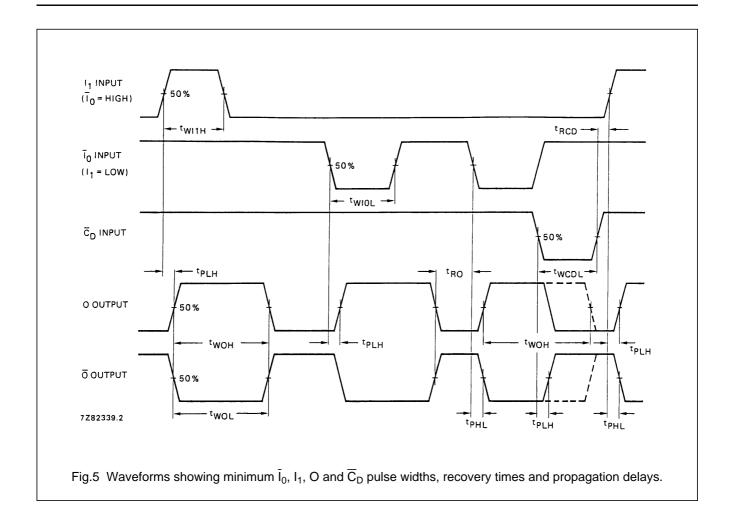
PARAMETER	V _{DD} (V)	SYMBOL	MIN.	TYP.	MAX.	UNIT	TYPICAL EXTRAPOLATION FORMULA
Propagation delay	5		_	200	460		173 ns + (0.55 ns/pF) C _L
\bar{I}_0 , I_1 to O	10	t _{PHL}	_	90	180	ns	79 ns + (0.23 ns/pF) C _L
HIGH to LOW	15		_	60	120		52 ns + (0.16 ns/pF) C _L
Propagation delay	5		_	220	440		193 ns + (0.55 ns/pF) C _L
\bar{I}_0 , I_1 to \overline{O}	10	t _{PLH}	_	85	190	ns	74 ns + (0.23 ns/pF) C _L
LOW to HIGH	15		_	60	120		52 ns + (0.16 ns/pF) C _L
Propagation delay	5		-	125	250		98 ns + (0.55 ns/pF) C _L
\overline{C}_D to O	10	t _{PHL}	_	55	110	ns	44 ns + (0.23 ns/pF) C _L
HIGH to LOW	15		_	40	80		32 ns + (0.16 ns/pF) C _L
Propagation delay	5		_	125	250		98 ns + (0.55 ns/pF) C _L
\overline{C}_D to O	10	t _{PLH}	_	55	110	ns	44 ns + (0.23 ns/pF) C _L
LOW to HIGH	15		_	40	80		32 ns + (0.16 ns/pF) C _L
D	5		_	20	40		
Recovery times \overline{C}_D to \overline{I}_0 , I_1	10	t _{RCD}	_	10	20	ns	
0) 10 10, 11	15		_	5	10		
Retrigger times	5		0	_	_		
O, \overline{O} to \overline{I}_0 , I_1	10	t _{RO}	0	_	_	ns	
LOW to OFF	15		0	_	_		
Minimum output	5		90	45	_		
pulse width LOW	10	t _{WIOL}	30	15	_	ns	
\bar{I}_0	15		24	12	_		
Minimum output	5		50	25	_		
pulse width LOW	10	t _{WI1H}	24	12	_	ns	
I ₁	15		20	10			
Output pulps width	5		9.3	10.0	10.6		
Output pulse width O, O	10	t _{WO}	9.2	9.9	10.5	ms	$R_t = 100 \text{ k}\Omega; C_t = 100 \text{ nF}$
3, 3	15		9.1	9.8	10.4		

Philips Semiconductors Preliminary specification

Dual precision monostable multivibrator

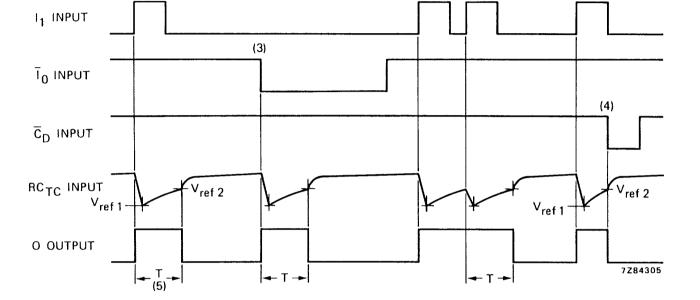
HEF4938B

AC CHARACTERISTICS


 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		
Change in output O	5			± 0,2		%	
pulse width over	10	Δt_{WO}		± 0,2		%	
temperature (T _{amb})	15			± 0,2		%	
Change in output O							
pulse width over		Δt_{WO}		± 1,5		%	
V _{DD} range 5 to 15 V							
Pulse width variation	5			± 1		%	D 40010
between circuits	10	Δt_{WO}		± 1		%	$R_t = 100 \text{ k}\Omega$ $C_t = 2 \text{ nF to } 10 \mu\text{F}$
in same package	15			± 1		%	Ot - 2111 10 10 μ1
External timing							
resistor		R _t	5	_	(1)	$k\Omega$	
External timing							
capacitor		Ct	2000	_	no limits	pF	
Input capacitance							
(pin 2 or 14)		C _{IN}		15		pF	

Note


^{1.} The maximum permissible resistance R_t , which holds the specified accuracy of t_{WO} , depends on the leakage current of the capacitor C_t and the leakage of the HEF4538B.

HEF4938B

Preliminary specification

Philips Semiconductors

(2)

(1)

(1)

- (1) Positive edge triggering.
- (2) Positive edge re-triggering (pulse lengthening).

(1)

- (3) Negative edge triggering.
- (4) Reset (pulse shortening).
- (5) $T = R_t \times C_t$.

Fig.6 Timing diagram.